The 33nd International Joint Conference on Artificial Intelligence 3th-9th August 2024, Jeju Island, South Korea

Paper ID:3261

An Image-enhanced Molecular Graph Representation Learning Framework

西湖大学 WESTLAKE UNIVERSITY

Hongxin Xiang^{1,2}, Shuting Jin³, Jun Xia⁴, Man Zhou⁵, Jianmin Wang⁶, Li Zeng², Xiangxiang Zeng¹

¹HNU, ²Yuyao Biotechnology Co., Ltd, ³WUST, ⁴Westlake University, ⁵USTC, ⁶Yonsei University

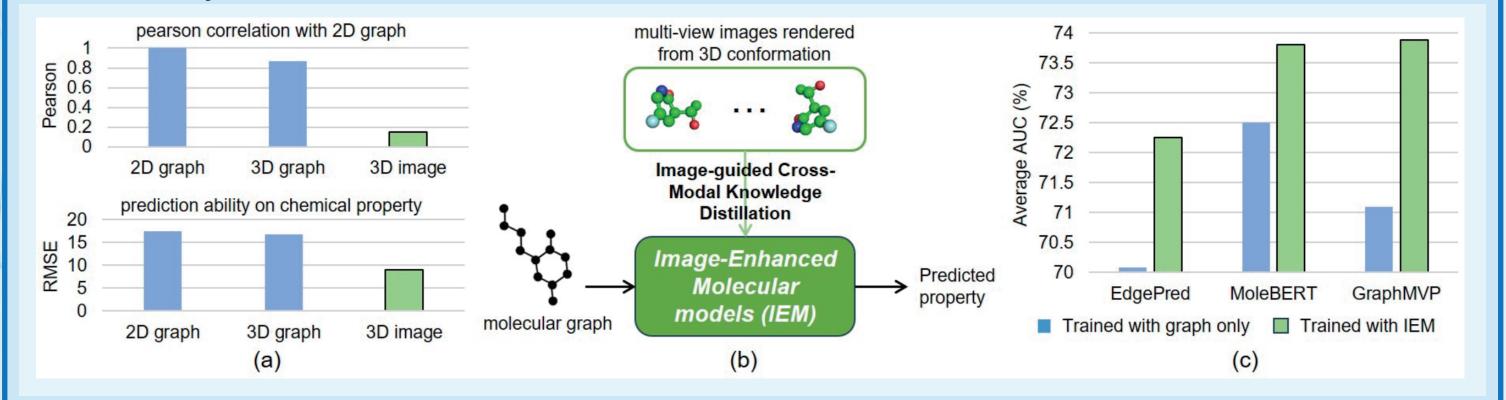
Introduction

- **Molecular Representation Learning** plays an import role in high-precision drug discovery (such as molecular property prediction, target activity prediction).
 - > Limited by a single modality: The paradigm of learning from a single modality gradually encounters the bottleneck of limited representation capabilities.
 - > Multimodal fusion has limited improvements: 1) similar modalities and encoding ways. 2) weak feature extraction ability, resulting in insufficient comple-

Related Work

- **Graph-based Molecular Representation Learning:** In view of the high cost of annotating molecules, recent studies mainly learn from large-scale label-free molecular databases by designing pre-training strategies.
- *** Image-based Molecular Representation Learning:** Because graphs are discrete and unordered, some researchers consider representing molecules as

mentary information between modalities.



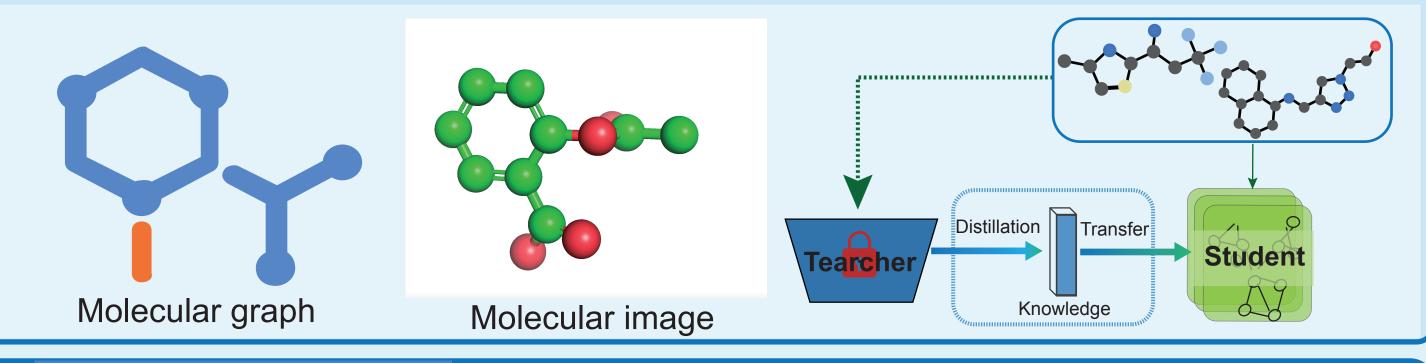
We propose an image-enhanced molecular graph representation learning framework (called **IEM**) that leverages multi-view molecular images rendered from 3D conformations to boost molecular graph representations.

IEM Framework

- **Overview of the IEM:** The image-enhanced molecular graph representation learning framework (IEM), which equips knowledgeable teachers and distillation **strategies** to prevent negative transfer
- **The process of pre-training the teacher:** Use **5 pre-training tasks** to train a knowledgeable teacher.
- *** Execution process of the knowledge enhancer:** Exploit image-based **teacher** to enhance graph-based student by using the knowledge enhancer and task enhancer.
- **Execution process of the task enhancer:** Train IEM and inference in down-

images and utilizing mature computer vision techniques to extract features.

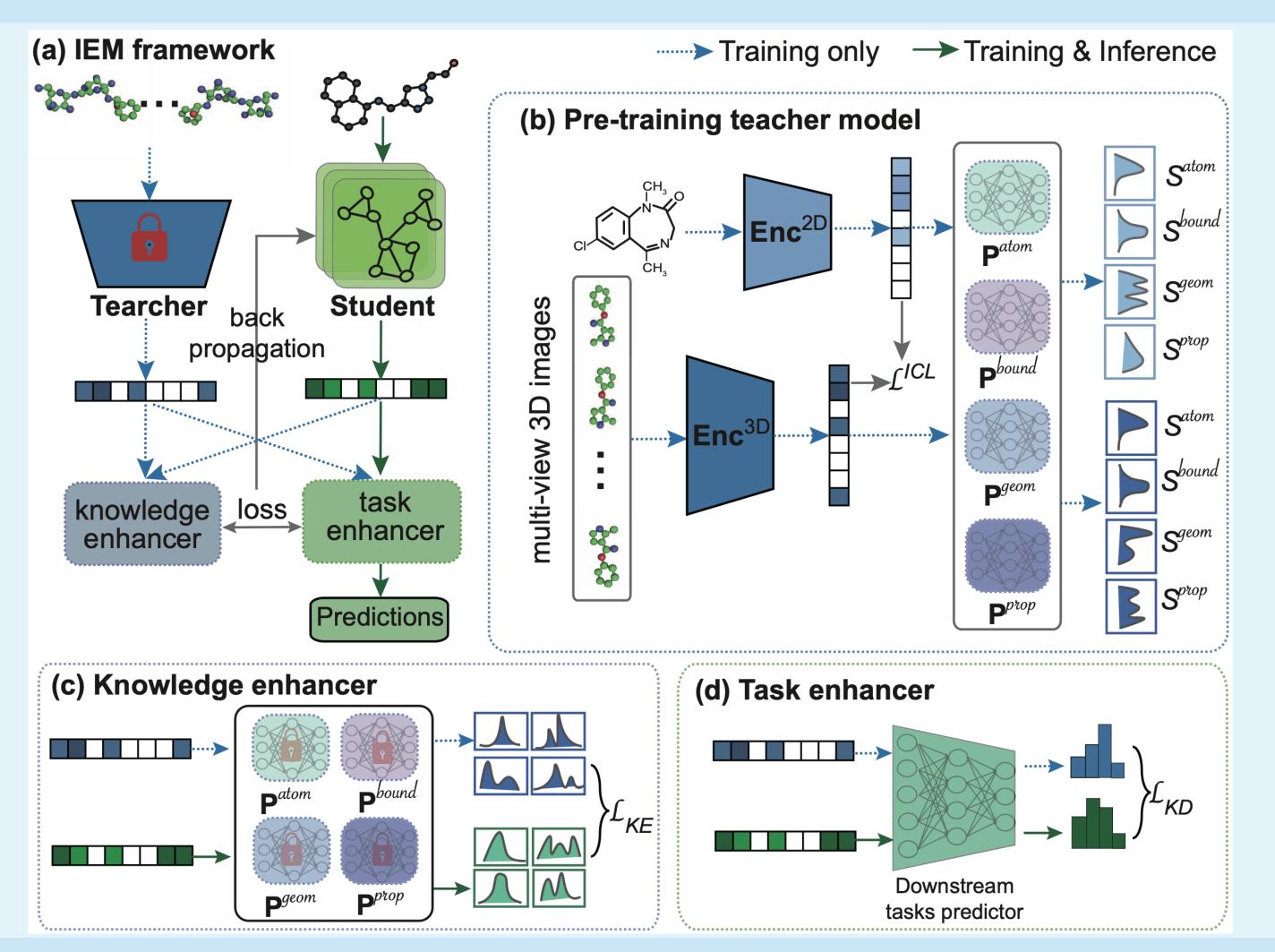
* Cross-Modal Knowledge Distillation: As an important branch of knowledge distillation, crossmodal knowledge distillation (CMKD) is still a relatively emerging field, which refers to using a teacher from another modality to supervise the learning model of the current modality and improve the performance of the student during inference.



Results

- **Datasets:** 1) 2 millions unlabeled molecules with 3D conformations from PCQM4Mv2 database. 2) 8 binary classification datasets from MoleculeNet. 3) 4 regression datasets included in GraphMVP.
- **Comparsion with other methods in classification tasks:** The ROC-AUC (%) performance of different methods on 8 classification datasets of MPP.

	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	BBBP	BACE	Average
#Molecules	7831	8576	1427	1478	93087	41127	2039	1513	_
#Task	12	617	27	2	17	1	1	1	-
GIN [Xu et al., 2018]	74.3(0.9)	61.5(0.8)	57.3(1.2)	57.2(4.1)	71.6(2.8)	75.2(2.0)	66.7(1.8)	69.6(5.5)	66.68
IEM-GIN	74.5(0.4)	62.5(0.8)	59.1(1.7)	62.6(4.1)	77.7(2.9)	77.9(1.3)	69.3(1.9)	77.7(3.5)	70.16
Δ	$\uparrow 0.2$	↑ 1.0	↑ 1.8	↑ 5 .4	↑ 6.1	↑ 2.7	↑ 2.6	↑ 8.1	↑ 3.5
EdgePred [Hu et al., 2020a]	76.0(0.6)	64.1(0.6)	60.4(0.7)	64.1(3.7)	75.1(1.2)	76.3(1.0)	67.3(2.4)	77.3(3.5)	70.08
IEM-EdgePred	76.3(0.6)	64.6(0.6)	61.2(0.6)	67.5(2.3)	78.3(1.3)	<u>78.3</u> (1.3)	67.8(2.2)	84.1(0.8)	72.26
Δ	↑ 0.3	↑ 0.5	↑ 0.8	↑3.4	↑ 3.2	$\uparrow 2.0$	↑ 0.5	↑ 6.8	↑ 2.2
GraphMVP [Liu et al., 2021]	74.5(0.7)	63.4(0.5)	60.7(1.4)	78.4(6.4)	73.0(2.3)	75.6(1.6)	67.4(2.4)	75.8(3.0)	71.10
IEM-GraphMVP	75.9(0.7)	64.4(0.6)	61.9(1.7)	80.8(3.1)	77.3(1.2)	78.8 (1.1)	68.7(1.0)	<u>83.3</u> (1.4)	73.89
Δ	↑ 1.4	↑ 1.0	↑ 1.2	$\uparrow 2.4$	↑ 4 .3	↑ 3.2	↑ 1.3	↑ 7.5	↑ 2.8
GraphMVP-C [Liu et al., 2021]	74.6(0.4)	63.4(0.6)	60.6(1.3)	76.9(3.7)	72.8(2.4)	77.1(2.1)	<u>69.9</u> (1.4)	79.6(1.7)	71.86
IEM-GraphMVP-C	75.6(0.6)	<u>64.8</u> (0.5)	62.0(0.9)	<u>79.2</u> (2.9)	77.0(1.7)	78.2(1.0)	71.4(1.4)	81.9(1.6)	73.76
Δ	↑ 1.0	↑ 1.4	↑ 1.4	↑ 2.3	↑ 4.2	↑ 1.1	↑ 1.5	↑ 2.3	↑ 1.9
Mole-BERT [Xia et al., 2023]	<u>77.0</u> (0.3)	64.4(0.2)	<u>63.2</u> (0.7)	72.7(2.7)	<u>79.2</u> (2.0)	77.7(0.7)	65.7(2.3)	80.2(0.9)	72.51
IEM-Mole-BERT	77.8(0.4)	65.6(0.3)	65.3(0.8)	72.2(1.4)	79.7(1.8)	78.8(0.6)	68.1(1.0)	83.0(0.9)	<u>73.81</u>
Δ	↑ 0.8	↑ 1.2	↑ 2 .1	-0.5	↑ 0.5	↑ 1.1	↑ 2.4	↑ 2.8	↑ 1.3



*** IEM has the following advantages:** (1) **Universality**: IEM can be integrated with any graph-based method. (2) Effectiveness: IEM significantly improves the performance of several graph-based baselines. (3) Efficiency: As low as 5% of training images can still improve performance; (4) **Compatibility**: IEM is compatible with both 2D and 3D molecular images and different rendering strategies.

Comparsion with other methods in regression tasks: The ROC-AUC (%) performance of different methods on 4 regression datasets of MPP.

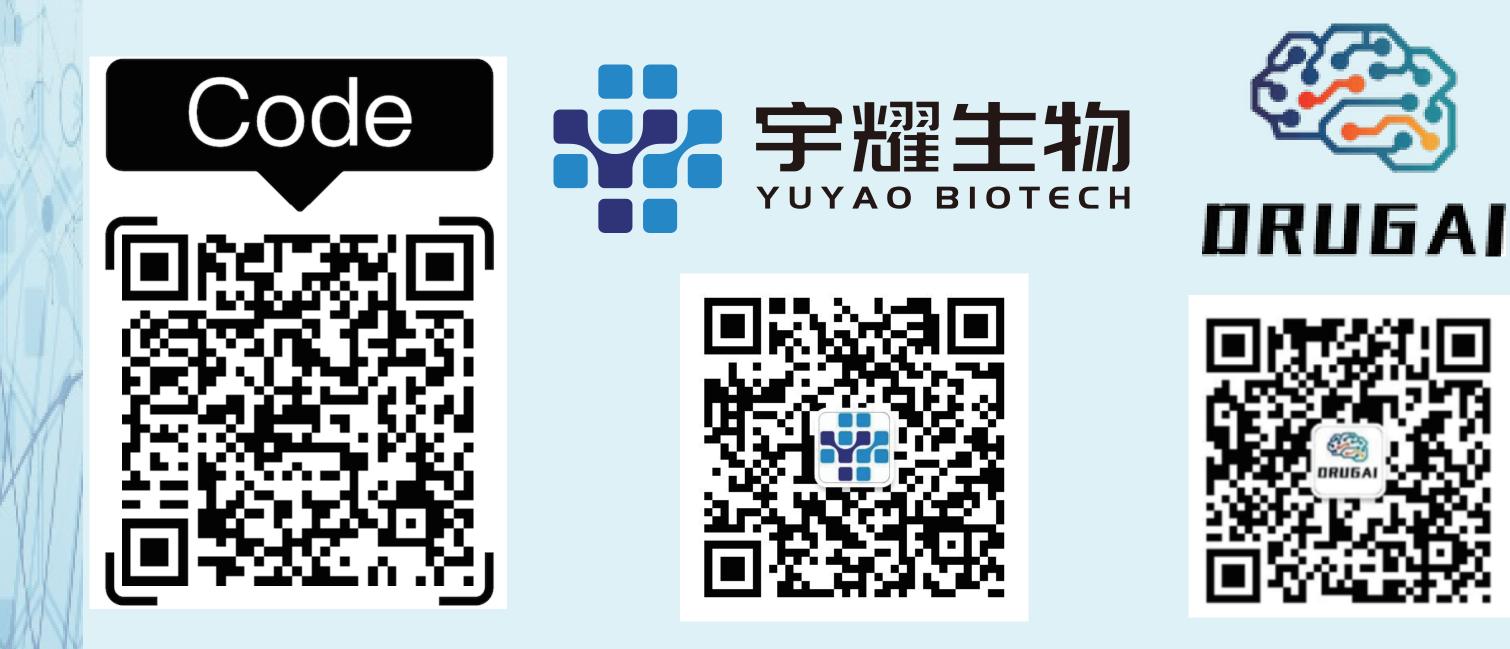
	ESOL	Lipo	Malaria	CEP	Gra IEM-(
#Molecules #Task	1,128 1	4,200 1	9,999 1	29,978 1	Graj
GIN w/o pre-train IEM-GIN Δ	1.472(0.038) 1.346(0.045) ↑ 8.56%	0.832(0.025) 0.817(0.019) ↑ 1.80%	$ \begin{array}{r} 1.113(0.011) \\ \underline{1.084}(0.003) \\ \uparrow 2.61\% \end{array} $	1.340(0.018) 1.329(0.021) ↑ 0.82%	IEM-G
EdgePred IEM-EdgePred Δ	1.367(0.041) 1.350(0.027) ↑ 1.24%	0.778(0.013) 0.769(0.006) ↑ 1.16%	1.110(0.011) 1.088(0.005) ↑1.98%	1.362(0.025) 1.345(0.016) ↑ 1.25%	Graj IEM-G

GraphMVP	1.322(0.062)	0.773(0.016)	1.128(0.019)	1.308(0.024)
IEM-GraphMVP	1.281(0.044)	0.754(0.015)	1.089(0.005)	1.294 (0.020)
∆	↑ 3.10%	↑ 2.46%	↑ 3.46%	↑ 1.07%
GraphMVP-C	1.333(0.055)	0.768(0.013)	1.114(0.008)	1.304(0.020)
IEM-GraphMVP-C	1.274(0.037)	0.761(0.017)	1.090(0.004)	<u>1.296</u> (0.012)
Д	↑ 4.43%	↑ 0.91%	↑2.15%	↑ 0.61%
MoleBERT	$ \begin{array}{r} 1.115(0.017) \\ \underline{1.090}(0.031) \\ \uparrow 2.24\% \end{array} $	0.727(0.006)	1.137(0.021)	1.350(0.015)
IEM-MoleBERT		0.716 (0.003)	1.080 (0.003)	1.343(0.013)
Д		↑ 1.51%	↑ 5.01%	↑ 0.52%
GraphMVP-F	1.094(0.037)	0.724(0.009)	1.106(0.013)	1.397(0.040)
IEM-GraphMVP-F	1.067 (0.039)	0.716(0.010)	1.093(0.012)	1.392(0.026)
Д	↑ 2.47%	↑ 1.10%	↑1.18%	↑ 0.36%

***** Different GNN Architectures:

The average ROC-AUC (%) performance on 8 classification datasets

	GCN	GIN	GAT	GraphSAGE
w/o IEM	66.88	66.68	66.53	66.99
w/ IEM	69.81	70.16	69.76	69.61
Δ	↑ 4.39%	$\uparrow 5.23\%$	$\uparrow 4.87\%$	↑ 3.92%



Different Image Rendering

Strategies: The average ROC-AUC (%) performance on 8 classification datasets with different image rendering methods.

Image Efficiency: The average
ROC-AUC (%) performance on 8
classification datasets with different
number of images.

Imag	ge rendering	Method		
Image type	Rendering strategy	EdgePred	GraphMVP	
×	×	70.08	71.1	
2D	RDKit	72.21 († 3.04%)	73.34 († 3.15%)	
2D	PyMol	72.00 († 2.74%)	73.41 († 3.25%)	
3D	PyMol	72.26 († 3.11%)	73.89 († 3.92%)	

			ima	ige size		
	0%	5%	10%	20%	50%	100%
IEM	71.10	72.20	72.26	72.95	73.38	73.89
Δ	-	$\uparrow 1.55\%$	↑1.64%	$\uparrow 2.60\%$	↑ 3.20%	↑ 3.92%

Ablation Study: Ablation results on knowledge enhancer (KE) and task enhancer (TE).

Enha	ncer	Method				
KE	TE	GCN	GIN	GAT	GraphSAGE	
×	×	66.88	66.68	66.53	66.99	
×	\checkmark	68.07 (1.19)	68.16 (1.48)	68.48 (1.95)	68.44 (1.45)	
\checkmark	×	68.26 (1.38)	68.60 (1.92)	68.59 (2.06)	68.58 (1.59)	
\checkmark	\checkmark	69.81 (2.93)	70.16 (3.48)	69.76 (3.23)	69.61 (2.62)	