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= Challenges in Molecular Representation Learning

Limited by a single modality: The paradigm of learning from a single modality (e.g., molecular graph)
gradually encounters the bottleneck of limited representation capabilities.
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Therefore, some researchers proposed multi-modality learning methods between 2D graph and 3D graph to
generalize molecular representation, such as GraphMVP and 3D Infomax.
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= Challenges in Molecular Representation Learning

Multimodal fusion has limited improvements:

« Similar modalities and encoding ways: As shown in the left figure below, the 3D graph and the 2D

graph has a high Pearson similarity.

+ Weak feature extraction ability, resulting in insufficient complementary information between
modalities. As shown in the right figure below, 2D graph and 3D graph are limited in understanding the
8 basic attributes of molecules (such as molecular weight, LogP, etc.).

pearson correlation with 2D graph

Pearson

cooo
ON P~ -

(I
2D graph 3D graph 3D image

Correlation coefficients between different
molecular representations and 2D graphs

We find that:

prediction ability on chemical property
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Average RMSE performance of different molecular
representations on 8 basic chemical attributes

+ 3D image has high Pearson similarity with 2D graph, indicating that 3D image can provide more

information to 2D graph;

« 3D image achieves good performance on 8 basic attributes of molecules, which can help 2D graph to
better understand the basic attributes of molecules.



= Challenges in Molecular Representation Learning

Exploiting the rich information in molecular images to enhance representation learning of
molecular graphs:

Q Multi-modal fusion learning between graph and image: requires additional computational costs in
the training and inference stages

Q Knowledge distillation: describe the process of information transfer as how to use a knowledgeable
teacher (image) to teach an excellent student (graph), which only introduces the prior of the image into
the graph-based model during the training phase without modifying any baseline model.
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= An Image-enhanced Molecular Graph Representation Learning Framework (IEM)

Therefore, we proposed an Image-enhanced Molecular Graph Representation Learning Framework,
called IEM.

There are two key design principles: (a) IEM framework —3 Training only —> Training & Inference
+ Knowledgeable teacher model. Mb'«"!"ﬁ‘ |
« Effective distillation strategy. AJ
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=m An Image-enhanced Molecular Graph Representation Learning Framework (IEM)
Knowledgeable molecular image-based teacher model
We considered four different types of knowledge, as follows:

e Atom knowledge S%°™ ¢ R™"°™ counts the chemical element distribution of 19 types of atoms in molecules, including
{C,N,O,F, S, Cl,Br, P, Si, B, Se, Ge, As, H, Ti, Ga, Ca, Mg, Zn}, where n**°™ = 19.

* Bound knowledge S%°“"¢ ¢ R™"*" counts the distribution of 4 types of bounds in molecules, including {single bound,
aromatic bound, double bound, triple bound}, where pbound — 4

* Geometry knowledge S9¢°™ ¢ R™“"" counts the geometry distribution in molecules. In detail, given a molecule with n
atoms, we extract the 3D coordinates of each atom and normalize them. Then, we flatten these normalized three-dimensional
coordinates into a one-dimensional vector of length n x 3. Since the number of atoms in each molecule varies, we set the
maximum dimension of $9¢° to n9¢°™ = 60. If the molecule is below this dimension, it is padded with 0, and if it is
above this dimension, it is truncated.

« Chemical properties knowledge S?"°? ¢ R™""" counts the property distribution in molecules. Different from the
properties in downstream molecular property prediction tasks, the properties here are basic attributes possessed by every
molecule. We used a total of 8 attributes, including {molecular weight, MolLogP, MoIMR, BalabanJ, NumHAcceptors,
NumHDonors, NumValenceElectrons, TPSA}. See Table S2 for details.



= An Image-enhanced Molecular Graph Representation Learning Framework (IEM)

Knowledgeable molecular image-based teacher model

Pretraining data: 2 million molecular conformations.

5 pre-training strategies to enhance the representational power of the teacher model:

ICL: contrastive learning between 2D and 3D images

ADP: atom distribution pre- diction task (b) Pre-training teacher model

BDP: bound distribution prediction task s

Sbound
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GDP: geometry distribution prediction task

PDP: property distribution prediction task
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= An Image-enhanced Molecular Graph Representation Learning Framework (IEM)
Effective distillation strategy

2 enhancers to align graph and image in logit space to avoid modality gaps in feature space:

 Knowledge enhancer is used to transfer 4 basic knowledge (atom, bound, geometry, and
chemical property) from image to graph.

« Task enhancer is used to transfer knowledge related to downstream tasks from images to
graph.

(c) Knowledge enhancer
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= An Image-enhanced Molecular Graph Representation Learning Framework (IEM)

Training and inference
Ining ! (a) IEM framework

In the knowledge distillation stage, we freeze the Mﬁ?’ ] M M
teacher model and use the knowledge enhancer and

task enhancer to transfer the teacher's knowledge to

the student. In the subsequent reasoning stage, we no

longer need the teacher model, only the student model
is needed to complete the reasoning.

The loss function of distillation stage: Tearcher .,  Student

Liotal = \AKELKE + A\TELTE + LT

wss?
....
....
....
58

* Lgr is distillation loss from knowledge enhancer.
« Lrg is distillation loss from task enhancer.

« Lq is the loss from the student model on the
downstream task, such as the cross entropy loss.

* Agg and A are the balance coefficient.

.............................

[Predictions]




m Datasets and Settings

+ Datasets: 8 classification datasets and 4 regression datasets from molecular property prediction task.

« Splitting: All datasets are divided into training set, validation set and test set according to 8:1:1 with
scaffold split.

« Evaluation Metric: ROC-AUC for classification tasks and RMSE for regression tasks.
« We report the mean (standard deviation) performance of 10 random seeds from 0 to 9.



= Results

ESOL Lipo Malaria CEP
P : #Molecules 1,128 4,200 9,999 29,978
The performance on 8 classification datasets and 4 regression [ ° i : ) .
d atasets - GIN 1.472(0.038) 0.832(0.025) 1.113(0.011) 1.340(0.018)
. . . IEM-GIN 1.346(0.045) 0.817(0.019) 1.084(0.003) 1.329(0.021)
* |IEM consistently improves performance across all baselines. 4 1856%  1180%  1261%  1082%
EdgePred 1.367(0.041) 0.778(0.013) 1.110(0.011) 1.362(0.025)
IEM-EdgePred 1.350(0.027) 0.769(0.006) 1.088(0.005) 1.345(0.016)
Tox21 ToxCast Sider ClinTox MUV HIV BBBP BACE | Average A T 1.24% T 1.16% T 1.98% T 1.25%
#Molecules 7831 8576 1427 1478 93087 41127 2039 1513 GraphMVP 1.322(0.062) 0.773(0.016) 1.128(0.019) 1.308(0.024)
ok 22 i e 2 al : ) : IEM-GraphMVP 1.281(0.044)  0.754(0.015) 1.089(0.005) 1.294(0.020)
GIN [Xu et al., 2018] 743(09)  61.50.8)  573(12)  S72(41) 7168 752200  667(1.8)  69.6(5.5) 66.68 A 1+3.10% 12.46% 13.46% +1.07%
[EM-GIN 745004)  625(0.8)  59.1(L.7)  626(41)  77729)  779(13)  69.3(19)  77.7(3.5) 70.16 : i il i
a 102 10 118 T2 Tiod L 125 U T3 GraphMVP-C 1.333(0.055) 0.768(0.013) 1.114(0.008) 1.304(0.020)
EdgePred [Hu et al., 2020a] 76.0(0.6) 64.1(0.6) 60.4(0.7) 64.1(3.7) 75.1(1.2) 76.3(1.0) 67.3(24) 77.3(3.5) 70.08 IEM-GraphMVP-C 1274(0037) 0.761 (00 17) 1 090(0004) 1 296(00 12)
IEM-EdgePred 763(06) 64606  6120.6)  67523)  783(13)  7183(13)  67.822)  84.1(0.8) 7226 —===
N 103 105 108 134 132 120 105 168 122 A 1443% T0.91% 12.15% 10.61%
GraphMVP [Liu ef al., 2021] 74.5(0.7) 63.4(0.5) 60.7(1.4) 78.4(6.4) 73.0(2.3) 75.6(1.6) 67.4(24) 75.8(3.0) 71.10 MoleBERT 1.1 15(0_017) 0.727(0.006) 1.1 37(0_02 1) 1 _350(0.015)
IEM-GraphMVP 75907)  64.406)  619(17)  80.8(3.1)  773(12)  788(L1)  687(1.0)  833(14) | 73.89
o 9y i i o i 2 i vyl W IEM-MoleBERT 1.090(0.031)  0.716(0.003) 1.080(0.003) 1.343(0.013)
GraphMVP-C [Liu eral., 20211 746(04)  63.4(0.6)  606(13) 76937  728Q4)  77.1Q.1)  699014)  79.6(1.7) 71.86 A T224% T151% 15.01% T0.52%
IEM-GraphMVP-C 75606)  64805)  62009)  79229)  77.0(17)  782(10)  714(14)  81.9(1.6) 7376
A i =¥ row T i oy o ey, 1e GraphMVP-F 1.094(0.037)  0.724(0.009) 1.106(0.013) 1.397(0.040)
Mole-BERT [Xia et al., 2023] 77.0(0.3) 64.4(0.2) 63.2(0.7) 72.7(2.7) 79.2(2.0) 77.7(0.7) 65.7(2.3) 80.2(0.9) 72.51 IEM-GraphMVP-F 1.067(0.039)  0.716(0.010) 1.093(0.012) 1.392(0.026)
TEM-Mole-BERT 77804)  65.6(03)  653(0.8)  722(14)  79.7(1.8)  788(0.6)  68.1(1.0)  83.009) | 73.81 A 1247% T 1.10% 11.18% 10.36%
A 108 112 121 05 105 111 124 128 113

Table 1: The ROC-AUC (%) performance of different methods on 8 classification datasets of molecular property prediction. We report the
mean (standard deviation) ROC-AUC of 10 random seeds from 0 to 9 with scaffold splitting. The best and second best results are marked
bold and underlined. IEM-baseline represents baseline equipped with IEM. A represents the absolute improvement percentage calculated by

AUCyw eM — AUCyo IEM.

w/o IEM
w/ IEM

Table 2: The RMSE performance on 4 regression datasets of molec-
ular property prediction. We report the mean (standard deviation)
RMSE of 10 random seeds from 0 to 9 with scaffold splitting. IEM-
baseline represents baseline equipped with IEM. A represents the
relative improvement percentage calculated by (1 —

) x 100.



= Results

* IEM can improve the performance of different GNN architectures

GCN GIN GAT  GraphSAGE
wioIEM  66.88 66.68 66.53 66.99
w/ IEM 69.81 70.16 69.76 69.61

A 1439% 1523% 1487% 13.92%

Table 3: The average ROC-AUC (%) performance on 8 classification
datasets with different GNN architectures. w/o means baseline with-
out [EM and w/ means baseline with IEM. A represents the relative

improvement percentage calculated by (1 — ¥2E) x 100.

IEM is compatible with conformation-free molecular images, which improves the performance
of EdgePred and GraphMVP by using 2D images.

Image rendering Method
Image type = Rendering strategy EdgePred GraphMVP
X X 70.08 71.1
2D RDKit 7221 (13.04%)  73.34 (1 3.15%)
2D PyMol 72.00 (1 2.74%)  73.41 (1 3.25%)
3D PyMol 72.26 (13.11%)  73.89 (1 3.92%)

Table 4: The average ROC-AUC (%) performance on 8 classification
datasets with different image rendering methods. The number in
bracket indicates the percentage of absolute performance improve-
ment compared to the baseline without IEM.



= Results

Ablation study on different image size
« The more images used, the more obvious the performance improvement

« When using only 5% of the image data, it can still achieve a good performance improvement,
showing the efficiency of IEM.

image size
0% 5% 10% 20% 50% 100%
IEM | 71.10 72.20 72.26 1295 73.38 73.89
A - T155% 1164% 1260% 1320% 13.92%

Table 5: The average ROC-AUC (%) performance on 8 classification
datasets with different number of images. The image size represents

the proportion of image samples used. We use GraphM VP as baseline
model. A represents the relative improvement percentage.



= Results

Ablation study on two enhancers KE and TE
« KE and TE can consistently improve the performance of different GNN architectures

« The improvement of KE is larger than that of TE, indicating that atomic, bond, geometric, and
property knowledge is more effective.

« By combining both enhancers, even more performance gains can be achieved.

Enhancer Method
KE TE GCN GIN GAT GraphSAGE
X X 66.88 66.68 66.53 66.99
X v 68.07 (1.19) 68.16 (1.48) 68.48 (1.95) 68.44 (1.45)
v X 68.26 (1.38) 68.60 (1.92) 68.59 (2.06) 68.58 (1.59)
v v 69.81 (2.93) 70.16 (3.48) 69.76 (3.23) 69.61 (2.62)

Table 6: Ablation results on knowledge enhancer (KE) and task
enhancer (TE). The average ROC-AUC (%) performance on 8 clas-
sification datasets is reported. The number in bracket indicates the

absolute performance improvement compared to the baseline without
KE and TE.
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