Conformations and MD using GenAI and DL
Published:
awesome-AI4MolConformation-MD
List of molecules ( small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations and molecular dynamics (force fields) using generative artificial intelligence and deep learning
Updating …
Menu
Reviews
An overview about neural networks potentials in molecular dynamics simulation [2024]
Martin‐Barrios, Raidel, Edisel Navas‐Conyedo, Xuyi Zhang, Yunwei Chen, and Jorge Gulín‐González.
International Journal of Quantum Chemistry 124.11 (2024)Artificial Intelligence Enhanced Molecular Simulations [2023]
Zhang, Jun, Dechin Chen, Yijie Xia, Yu-Peng Huang, Xiaohan Lin, Xu Han, Ningxi Ni et al.
J. Chem. Theory Comput. (2023)Machine Learning Generation of Dynamic Protein Conformational Ensembles [2023]
Zheng, Li-E., Shrishti Barethiya, Erik Nordquist, and Jianhan Chen.
Molecules 28.10 (2023)
Datasets and Package
Datasets
- mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics [2024]
Antonio Mirarchi, Toni Giorgino, G. D. Fabritiis.
arXiv:2407.14794 (2024) | code
Package
MMolearn
a Python package streamlining the design of generative models of biomolecular dynamics
https://github.com/LumosBio/MolData
Molecular dynamics
Molecular Force Fields
HessFit: A Toolkit to Derive Automated Force Fields from Quantum Mechanical Information [2024]
Falbo, E. and Lavecchia, A.
J. Chem. Inf. Model. (2024) | codeA Euclidean transformer for fast and stable machine learned force fields [2024]
Frank, J.T., Unke, O.T., Müller, KR. et al.
Nat Commun 15, 6539 (2024) | codeDifferentiable simulation to develop molecular dynamics force fields for disordered proteins [2024]
Greener, Joe G.
Chemical Science 15.13 (2024) | codeGrappa–A Machine Learned Molecular Mechanics Force Field [2024]
Seute, Leif, Eric Hartmann, Jan Stühmer, and Frauke Gräter.
arXiv:2404.00050 (2024) | codeAn implementation of the Martini coarse-grained force field in OpenMM [2023]
MacCallum, J. L., Hu, S., Lenz, S., Souza, P. C., Corradi, V., & Tieleman, D. P.
Biophysical Journal 122.14 (2023)
MD Engines-Frameworks
- Amber - A suite of biomolecular simulation programs.
- Gromacs - A molecular dynamics package mainly designed for simulations of proteins, lipids and nucleic acids.
- OpenMM - A toolkit for molecular simulation using high performance GPU code.
- CHARMM - A molecular simulation program with broad application to many-particle systems.
- HTMD - Programming Environment for Molecular Discovery.
- ACEMD - The next generation molecular dynamic simulation software.
- NAMD - A parallel molecular dynamics code for large biomolecular systems..
- StreaMD - A tool to perform high-throughput automated molecular dynamics simulations..
AI4MD Engines-Frameworks
- OpenMM 8 - Molecular Dynamics Simulation with Machine Learning Potentials.
- DeePMD-kit - A deep learning package for many-body potential energy representation and molecular dynamics.
- TorchMD - End-To-End Molecular Dynamics (MD) Engine using PyTorch.
- TorchMD-NET - TorchMD-NET provides state-of-the-art neural networks potentials (NNPs) and a mechanism to train them.
- OpenMM-Torch - OpenMM plugin to define forces with neural networks.
MD Trajectory Processing-Analysis
- MDAnalysis - An object-oriented Python library to analyze trajectories from molecular dynamics (MD) simulations in many popular formats.
- MDTraj - A python library that allows users to manipulate molecular dynamics (MD) trajectories.
- PyTraj - A Python front-end package of the popular cpptraj program.
- CppTraj - Biomolecular simulation trajectory/data analysis.
- WEDAP - A Python Package for Streamlined Plotting of Molecular Simulation Data.
- Melodia - A Python library for protein structure analysis.
- MDANCE - A flexible n-ary clustering package that provides a set of tools for clustering Molecular Dynamics trajectories.
- PENSA - A collection of python methods for exploratory analysis and comparison of biomolecular conformational ensembles.
Reference
https://github.com/ipudu/awesome-molecular-dynamics
Visualization
- VMD - A molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting.
- NGLview - IPython widget to interactively view molecular structures and trajectories.
- PyMOL - A user-sponsored molecular visualization system on an open-source foundation, maintained and distributed by Schrödinger.
- Avogadro - An advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas.
AI4MD
Machine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N’tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024) | codeUnsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
Briefings in Bioinformatics (2024) | codeBiomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments [2024]
Unke, Oliver T., Martin Stöhr, Stefan Ganscha, Thomas Unterthiner, Hartmut Maennel, Sergii Kashubin, Daniel Ahlin et al.
Science Advances 10.14 (2024) | dataDeePMD-kit v2: A software package for deep potential models [2023]
Zeng, Jinzhe, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik et al.
The Journal of Chemical Physics 159.5 (2023) | codeDeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [2018]
Wang, Han, Linfeng Zhang, Jiequn Han, and E. Weinan.
Computer Physics Communications 228 (2018) | code
Neural Network Potentials
Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
J. Chem. Inf. Model. (2024) | codeUniversal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
Commun Mater 5, 148 (2024)The Potential of Neural Network Potentials [2024]
Duignan, Timothy T.
ACS Physical Chemistry Au 4.3 (2024)AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs [2024]
Anstine, Dylan, Roman Zubatyuk, and Olexandr Isayev.
chemrxiv-2023-296ch-v2 (2024) | codeNNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics [2023]
Galvelis, R., Varela-Rial, A., Doerr, S., Fino, R., Eastman, P., Markland, T.E., Chodera, J.D. and De Fabritiis, G.
J. Chem. Inf. Model. (2023) | codeTowards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements [2022]
Takamoto, S., Shinagawa, C., Motoki, D. et al.
Nat Commun 13, 2991 (2022) | dataTeaching a neural network to attach and detach electrons from molecules [2021]
Zubatyuk, R., Smith, J.S., Nebgen, B.T. et al.
Nat Commun 12, 4870 (2021) | codeFour Generations of High-Dimensional Neural Network Potentials [2021]
Behler, Jorg.
Chemical Reviews 121.16 (2021)DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [2020]
Zhang, Yuzhi, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and E. Weinan.
Computer Physics Communications 253 (2020) | code
Free Energy Perturbation
- Machine Learning Guided AQFEP: A Fast and Efficient Absolute Free Energy Perturbation Solution for Virtual Screening [2024]
Crivelli-Decker, J.E., Beckwith, Z., Tom, G., Le, L., Khuttan, S., Salomon-Ferrer, R., Beall, J., Gómez-Bombarelli, R. and Bortolato, A.
J. Chem. Theory Comput. (2024) | code
Deep Learning-molecular conformations
- GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling [2022]
Do, Hung N., Jinan Wang, Apurba Bhattarai, and Yinglong Miao.
J. Chem. Theory Comput. (2022) | code
AlphaFold-based
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2 [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
Proceedings of the National Academy of Sciences (2024)Leveraging Machine Learning and AlphaFold2 Steering to Discover State-Specific Inhibitors Across the Kinome [2024]
Francesco Trozzi, Oanh Tran, Carmen Al Masri, Shu-Hang Lin, Balaguru Ravikumar, Rayees Rahman.
bioRxiv (2024)A resource for comparing AF-Cluster and other AlphaFold2 sampling methods [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
bioRxiv (2024)Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
The Journal of Physical Chemistry B (2024)AFsample2: Predicting multiple conformations and ensembles with AlphaFold2 [2024]
Yogesh Kalakoti, Björn Wallner.
bioRxiv (2024) | codePrediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
bioRxiv (2024) | codeEmpowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
arXiv:2404.07102 (2024)High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
Nat Commun 15, 2464 (2024) | codeAlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | codePredicting multiple conformations via sequence clustering and AlphaFold2 [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
Nature 625, 832–839 (2024) | codeAlphaFold2-RAVE: From Sequence to Boltzmann Ranking [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
J. Chem. Theory Comput. (2023)) | codeInvestigating the conformational landscape of AlphaFold2-predicted protein kinase structures [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
Bioinformatics Advances. (2023)) | codeExploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
bioRxiv (2023) | codeSampling alternative conformational states of transporters and receptors with AlphaFold2 [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
Elife 11 (2022) | code
GNN-based
AbFlex: Predicting the conformational flexibility of antibody CDRs [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
ICML’24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024) | codeRevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints [2024]
Huang, Ying, Huiling Zhang, Zhenli Lin, Yanjie Wei, and Wenhui Xi.
bioRxiv (2024) | code
LSTM-based
- Learning molecular dynamics with simple language model built upon long short-term memory neural network [2020]
Tsai, ST., Kuo, EJ. & Tiwary, P.
Nat Commun 11, 5115 (2020) | code
Transformer-based
Exploring the conformational ensembles of protein-protein complex with transformer-based generative model [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
J. Chem. Theory Comput. (2024) | bioRxiv (2024) | codeData-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
The Journal of Physical Chemistry B (2024) | codeMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code
VAE-based
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | dataProtein Ensemble Generation Through Variational Autoencoder Latent Space Sampling [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
J. Chem. Theory Comput. (2024)Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
Briefings in Bioinformatics. (2024) | codeEnhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
International Journal of Molecular Sciences. (2023) | codeEncoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
bioRxiv (2023)Artificial intelligence guided conformational mining of intrinsically disordered proteins [2022]
Gupta, A., Dey, S., Hicks, A. et al.
Commun Biol 5, 610 (2022) | codeLAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
J. Chem. Inf. Model. (2022) | codeMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | codeProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
ICLR (2022)Explore protein conformational space with variational autoencoder [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
Frontiers in molecular biosciences 8 (2021) | code
GAN-based
Direct generation of protein conformational ensembles via machine learning [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
Nat Commun 14, 774 (2023) | codeMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code
Flow-based
Frame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
arXiv:2405.00751 (2024)AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | code
Diffusion-based
Generating Multi-state Conformations of P-type ATPases with a Diffusion Model [2024]
Jingtian Xu, Yong Wang.
bioRxiv (2024) | codeTransferable deep generative modeling of intrinsically disordered protein conformations [2024]
Abdin, O., Kim, P.M.
PLOS Computational Biology 20.5 (2024) | codeDirect conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion [2024]
Janson, Giacomo, and Michael Feig.
Nat Mach Intell 6, 775–786 (2024) | codeAccurate Conformation Sampling via Protein Structural Diffusion [2024]
Fan, Jiahao, Ziyao Li, Eric Alcaide, Guolin Ke, Huaqing Huang, and Weinan E.
bioRxiv (2024)Accurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
arXiv:2305.19800 (2023) | code
Score-based
Str2str: A score-based framework for zero-shot protein conformation sampling [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
ICLR (2024) | codeScore-based enhanced sampling for protein molecular dynamics [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
arXiv:2306.03117 (2023) | code
Energy-based
- Energy-based models for atomic-resolution protein conformations [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
ICLR (2020) | code
Bayesian-based
Enabling Population Protein Dynamics Through Bayesian Modeling [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
Bioinformatics (2024)Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network [2023]
Do, Hung N., and Yinglong Miao.
bioRxiv(2023) | codeDeep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
bioRxiv(2023) | code
Active Learning-based
- Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [2023]
Kleiman, Diego E., and Diwakar Shukla.
J. Chem. Theory Comput. (2023) | code
LLM-MD
- Molecular simulation with an LLM-agent [2024]
MD-Agent is a LLM-agent based toolset for Molecular Dynamics.
code
Molecular conformational ensembles by methods
Small molecule conformational ensembles
Diffusion-based generative AI for exploring transition states from 2D molecular graphs [2024]
Kim, S., Woo, J. & Kim, W.Y.
Nat Commun 15, 341 (2024) | codePhysics-informed generative model for drug-like molecule conformers [2024]
David C. Williams, Neil Imana.
arXiv:2403.07925. (2024) | codeCOSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework [2024]
Kuznetsov, Maksim, Fedor Ryabov, Roman Schutski, Rim Shayakhmetov, Yen-Chu Lin, Alex Aliper, and Daniil Polykovskiy.
J. Chem. Inf. Model. (2024) | codeLeveraging 2D Molecular Graph Pretraining for Improved 3D Conformer Generation with Graph Neural Networks [2024]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
Computers & Chemical Engineering (2024) | codeDynamicsDiffusion: Generating and Rare Event Sampling of Molecular Dynamic Trajectories Using Diffusion Models [2023]
Petersen, Magnus, Gemma Roig, and Roberto Covino.
NeurIPS 2023 AI4Science (2023)Generating Molecular Conformer Fields [2023]
Yuyang Wang, Ahmed Elhag, Navdeep Jaitly, Joshua Susskind, Miguel Bautista.
[NeurIPS 2023 Generative AI and Biology (GenBio) Workshop (2023)]https://openreview.net/forum?id=Od1KtMeAYo)On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space [2023]
Zhou, Z., Liu, R. and Yu, T.
arXiv:2310.04915 (2023))Molecular Conformation Generation via Shifting Scores [2023]
Zhou, Zihan, Ruiying Liu, Chaolong Ying, Ruimao Zhang, and Tianshu Yu.
arXiv:2309.09985 (2023)EC-Conf: An Ultra-fast Diffusion Model for Molecular Conformation Generation with Equivariant Consistency [2023]
Fan, Zhiguang, Yuedong Yang, Mingyuan Xu, and Hongming Chen.
arXiv:2308.00237 (2023)Prediction of Molecular Conformation Using Deep Generative Neural Networks [2023]
Xu, Congsheng, Yi Lu, Xiaomei Deng, and Peiyuan Yu.
Chinese Journal of Chemistry(2023)Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [2023]
Zhu, Yanqiao, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du et al.
NeurIPS 2023 AI for Science Workshop. 2023 (2023) | codeDeep-Learning-Assisted Enhanced Sampling for Exploring Molecular Conformational Changes [2023]
Haohao Fu, Han Liu, Jingya Xing, Tong Zhao, Xueguang Shao, and Wensheng Cai.
J. Phys. Chem. B (2023)Torsional diffusion for molecular conformer generation [2022]
Jing, Bowen, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola.
NeurIPS. (2022) | codeGeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation [2022]
Xu, Minkai, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang.
International Conference on Learning Representations. (2022) | codeConformer-RL: A deep reinforcement learning library for conformer generation [2022]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
Journal of Computational Chemistry 43.27 (2022) | codeEnergy-inspired molecular conformation optimization [2022]
Guan, Jiaqi, Wesley Wei Qian, Wei-Ying Ma, Jianzhu Ma, and Jian Peng.
International Conference on Learning Representations. (2022) | codeAn End-to-End Framework for Molecular Conformation Generation via Bilevel Programming [2021]
Xu, Minkai, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, and Jian Tang.
International Conference on Machine Learning. PMLR (2021) | code
RNA conformational ensembles
On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules [2024]
Muscat, Stefano, Gianfranco Martino, Jacopo Manigrasso, Marco Marcia, and Marco De Vivo.
J. Chem. Theory Comput. (2024)Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations [2018]
Bottaro, S., Bussi, G., Kennedy, S.D., Turner, D.H. and Lindorff-Larsen, K.
Science advances 4.5 (2018) | code | data
Peptide conformational ensembles
CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning [2024]
Grambow, C.A., Weir, H., Cunningham, C.N. et al.
Sci Data 11, 859 (2024) | codeDirect conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion [2024]
Abdin, O., Kim, P.M.
Nat Mach Intell 6, 775–786 (2024) | codeAccurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
arXiv:2305.19800 (2023) | code
Protein conformational ensembles
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2 [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
Proceedings of the National Academy of Sciences (2024)A resource for comparing AF-Cluster and other AlphaFold2 sampling methods [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
bioRxiv (2024)Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
The Journal of Physical Chemistry B (2024)Transferable deep generative modeling of intrinsically disordered protein conformations [2024]
Abdin, O., Kim, P.M.
PLOS Computational Biology 20.5 (2024) | codeAFsample2: Predicting multiple conformations and ensembles with AlphaFold2 [2024]
Yogesh Kalakoti, Björn Wallner.
bioRxiv (2024) | codePrediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
bioRxiv (2024) | codeEmpowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
arXiv:2404.07102 (2024)High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
Nat Commun 15, 2464 (2024) | codeAlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | codePredicting multiple conformations via sequence clustering and AlphaFold2 [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
Nature 625, 832–839 (2024) | codeData-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
The Journal of Physical Chemistry B (2024) | codeFrame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
arXiv:2405.00751 (2024)AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | codeMachine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N’tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024) | codeDeciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | dataProtein Ensemble Generation Through Variational Autoencoder Latent Space Sampling [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
J. Chem. Theory Comput. (2024)Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
Briefings in Bioinformatics. (2024) | codeStr2str: A score-based framework for zero-shot protein conformation sampling [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
ICLR (2024) | codeEnabling Population Protein Dynamics Through Bayesian Modeling [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
Bioinformatics (2024)Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network [2023]
Do, Hung N., and Yinglong Miao.
bioRxiv(2023) | codeDeep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
bioRxiv(2023) | codeScore-based enhanced sampling for protein molecular dynamics [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
arXiv:2306.03117 (2023) | codeAlphaFold2-RAVE: From Sequence to Boltzmann Ranking [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
J. Chem. Theory Comput. (2023)) | codeInvestigating the conformational landscape of AlphaFold2-predicted protein kinase structures [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
Bioinformatics Advances. (2023)) | codeExploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
bioRxiv (2023) | codeActive Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [2023]
Kleiman, Diego E., and Diwakar Shukla.
J. Chem. Theory Comput. (2023) | codeDirect generation of protein conformational ensembles via machine learning [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
Nat Commun 14, 774 (2023) | codeEnhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
International Journal of Molecular Sciences. (2023) | codeMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | codeSampling alternative conformational states of transporters and receptors with AlphaFold2 [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
Elife 11 (2022) | codeArtificial intelligence guided conformational mining of intrinsically disordered proteins [2022]
Gupta, A., Dey, S., Hicks, A. et al.
Commun Biol 5, 610 (2022) | codeLAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
J. Chem. Inf. Model. (2022) | codeMolecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | codeProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
ICLR (2022)Explore protein conformational space with variational autoencoder [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
Frontiers in molecular biosciences 8 (2021) | codeEnergy-based models for atomic-resolution protein conformations [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
ICLR (2020) | code
Enzymes conformational ensembles
Generating Multi-state Conformations of P-type ATPases with a Diffusion Model [2024]
Jingtian Xu, Yong Wang.
bioRxiv (2024) | codeDeciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | data
Antibody conformational ensembles
- AbFlex: Predicting the conformational flexibility of antibody CDRs [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
ICML’24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024) | code
Ligand-Protein conformational ensembles
MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery [2024]
Siebenmorgen, T., Menezes, F., Benassou, S. et al.
Nat Comput Sci 4, 367–378 (2024) | codeEnhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
J. Chem. Inf. Model. (2024) | codeAssessment of molecular dynamics time series descriptors in protein-ligand affinity prediction [2024]
Poziemski, Jakub, Artur Yurkevych, and Pawel Siedlecki.
chemrxiv-2024-dxv36 (2024) | codePre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding [2022]
Wu, Fang, Shuting Jin, Yinghui Jiang, Xurui Jin, Bowen Tang, Zhangming Niu, Xiangrong Liu, Qiang Zhang, Xiangxiang Zeng, and Stan Z. Li.
Advanced Science 9.33 (2022) | code
PPI conformational ensembles
Quantifying conformational changes in the TCR:pMHC-I binding interface [2024]
Benjamin McMaster, Christopher Thorpe, Jamie Rossjohn, Charlotte M. Deane, Hashem Koohy.
bioRxiv (2024) | codeExploring the conformational ensembles of protein-protein complex with transformer-based generative model [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
J. Chem. Theory Comput. (2024) | bioRxiv (2024) | codeEncoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
bioRxiv (2023)Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
Briefings in Bioinformatics (2024) | code
RNA-Peptide conformational ensembles
- Enhanced Sampling Simulations of RNA-peptide Binding using Deep Learning Collective Variables [2024]
Nisha Kumari, Sonam Dhull, Tarak Karmakar.
bioRxiv (2024)
Material ensembles
- Universal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
Commun Mater 5, 148 (2024)